Some commutativity results for rings with two-variable constraints

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation

‎Let $R$ be a $*$-prime ring with center‎ ‎$Z(R)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $R$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎Suppose that $U$ is an ideal of $R$ such that $U^*=U$‎, ‎and $C_{sigma,tau}={cin‎ ‎R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper‎, ‎it is shown that if charac...

متن کامل

some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation

‎let $r$ be a $*$-prime ring with center‎ ‎$z(r)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $r$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $r$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎suppose that $u$ is an ideal of $r$ such that $u^*=u$‎, ‎and $c_{sigma,tau}={cin‎ ‎r~|~csigma(x)=tau(x)c~mbox{for~all}~xin r}.$ in the present paper‎, ‎it is shown that...

متن کامل

A COMMUTATIVITY CONDITION FOR RINGS

In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.

متن کامل

Some Polynomial Identities that Imply Commutativity of Rings

In this paper, we establish some commutativity theorems for certain rings with polynomial constraints as follows: Let R be an associative ring, and for all x, y ∈ R, and fixed non-negative integers m > 1, n ≥ 0, r > 0, s ≥ 0, t ≥ 0, p ≥ 0, q ≥ 0 such that P (x, y) = ±Q(x, y), where P (x, y) = ys[x, y]yt and Q(x, y) = xp[xm, yn]ryq. First,it is shown that a semiprime ring R is commutative if and...

متن کامل

a commutativity condition for rings

in this paper, we use the structure theory to prove an analog to a well-known theorem of herstein as follows: let r be a ring with center c such that for all x,y ? r either [x,y]= 0 or x-x [x,y]? c for some non negative integer n= n(x,y) dependingon x and y. then r is commutative.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0382357-9